

DPS1 - Power Supply / Charger

Rev. 091802

Overview:

DPS1 power supply/charger converts low voltage AC input into 6VDC or 12VDC @ 1.2 amp or 24VDC @ 750mA of continuous supply current (see specifications). This general purpose power supply has a wide range of applications for access control, security and CCTV system accessories that require additional power.

Specifications:

- Switch selectable 6VDC-12VDC-24VDC.
- 1.2 amp continuous supply current at 6VDC-12VDC.
- 750mA continuous supply current at 24VDC.
- Filtered and electronically regulated output.
- Built-in charger for sealed lead acid or gel type batteries.
- Maximum charge current 300mA.
- Automatic switchover to stand-by battery when AC Fails.
- PTC battery protection (circuit breakers available).
- Thermal and short circuit protection with auto reset.
- AC input and DC output LED indicators.
- Extremely compact design.
- Includes battery leads.
- Includes Snap Trac compatible (order Altronix model #ST3).

Board dimensions: 3"L x 2.5"W x 1.5"H

Voltage Output/Transformer Selection Table:

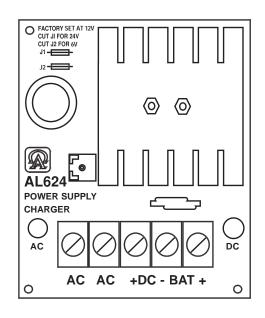
Output	Voltage Selector (JMPR)	Transformer
12VDC @ 1.2 amp continuous supply current	Leave J1 & J2 Intact	16.5VAC / 20 VA (Altronix model TP1620)
24VDC @ 750mA continuous supply current	Cut Jumper J1 Only	24VAC / 40 VA (Altronix model TP2440)
6VDC @1.2 amp continuous supply current	Cut Jumper J2 Only	12VAC / 20 VA (Altronix model TP1220)

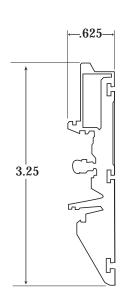
Installation Instructions:

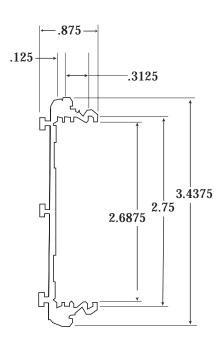
- 1. Mount DPS1 in desired location/enclosure.
- 2. Unit is factory set for 12VDC. For 6VDC output cut jumper J2, for 24VDC output cut Jumper J1.
- 3. Connect proper transformer to terminals marked [AC] (refer to Voltage Output/Transformer Selection Table). Use 18 AWG or larger for all power connections (Battery, DC output).

Keep power limited wiring separate from non-power limited wiring (115VAC / 60Hz Input, Battery Wires). Minimum .25" spacing must be provided.

- 4. Measure output voltage before connecting devices. This helps avoid potential damage.
- 5. Devices to be powered should be connected to terminals marked [+ DC] and [DC BAT] carefully observing polarity.
- 6. Connect battery to terminals marked [BAT +] and [DC NEG] (battery leads included) Use two (2) 12VDC batteries connected in series for 24VDC operation.


Note: When batteries are not used, a loss of AC will result in a loss of output voltage.


LED Diagnostics:


Red (DC)	Green (AC)	Power Supply Status
ON	ON	Normal operating condition.
ON	OFF	Loss of AC, Stand-by battery supplying power.
OFF	ON	No DC output. Short circuit or thermal overload condition.
OFF	OFF	No DC output. Loss of AC. Discharged or no battery present.

DPS1 - Board Drawing:

ST3 Drawing:



Terminal Identification:

Terminal Legend	Function/Description
AC/AC	Low voltage AC input (refer to Voltage Output/Transformer Selection Table).
- DC +	6VDC-12VDC @ 1.2 amp continuous supply current. 24VDC @ 750mA continuous supply currentt.
+ BAT -	Stand-by battery connections. Maximum charge rate 300mA.

