$$
\begin{aligned}
& \text { 5700P Series Power Operator } \\
& \text { Stop (Push) Side M ount } \\
& \text { with Optional Plug-In Power Input } \\
& \text { Installation and Instruction M anual }
\end{aligned}
$$

Patents 5,881,497; 7,316,096; 7,484,333

Item No.	Description
1	Back plate
2	Door Closer (1601LAP or 1601BFLAP)
3	Motor Assembly (5700M)
4	Inverter (5700IN)
5	Cover (5700COV)
6	On/Off switch
7	Circuit Breaker
8	Power Cord Connection
9	Activation Inputs
10	Door Open/Closed Position Magnets
11	Optional RF Receiver
12	Power Supply - 1.1A 24V
13	18 inch max. Power Cord (not shown)

Tools required:

- 1/8" allen wrench (included)
- Flat blade screwdriver (potentiometer \& terminal size)
- Screwdriver (Phillips size 2)
- Tape ruler
- Power drill and set of drill bits
- Center punch
- Wire stripper
- \#7 drill 1/4-20 tap (metal frame instal)

WARNINGS

- If local code requires unit to be hard wired instead of using the plug-in type power supply cord supplied with this version of the unit, the unit MUSTbe returned to the manufacturer and replaced with a unit designed to be hard wired.
- To reduce the risk of shock, this operator has a grounding type plug, that has a third (grounding) pin. This plug will only fit into a grounding type outlet. If the plug does not fit into the outlet, contact a qualified electrician to install the proper outlet. Doe not change the plug in any way.
- Always disconnect the main power to the operator prior to servicing or cleaning.
- This operator is for indoor use only.
- To reduce the risk of injury or person, use the operator only with Pedestrian Swing doors.
- 120VAC power supplied to the operator must be a dedicated circuit from the main circuit breaker panel and must NOT be connected into any building lighting system that operates fluorescent lights.
- Maximum door size: 48 in (1219 mm) wide 250 lb (113.4 kg).

Contents

General	2	Final Setup	8
Frame Reinforcement Table/ Technical Data	2	Inverter Details	9
Component Layout	3	Accessory / Typical Installations	10
ADA / ANSI / UL	3	Troubleshooting	10
Stop (Push) Side Mounting	4.	RF Receiver Setup	12
Adjust Power and Opening / Closing Cycle	7.	RH Door Template	. 14
Input Power Configuration / Plug In Location	8	LH Door Template	15

General Information

- UL labeled fire or smoke barrier door assemblies require that the 120VAC $(60 \mathrm{~Hz})$ power input to the LEEDor operator be supplied through normally closed al arm contacts of the al arm system / alarm panel.
- All wiring must conform to standard wiring practice in accordance with national and local wiring codes.
- Note: Unless otherwise noted, all dimensions are given in inches (millimeters).
- Minimum suggested and required material thickness for hollow metal frames (skin plus reinforcement) is charted on below.
- Unit is Non-Handed.
- Door must be hung on butt hinges [5" (127mm) max. width] or $3 / 4$ " (19 mm) offset pivots. A separate door and frame preparation template will be supplied for other conditions.
- Door must swing freely through the entire opening and closing cycle before beginning the installation.
- Use of an auxiliary door stop (by others) is always recommended.
- An incorrectly installed or improperly adjusted door operator can cause property damage or personal injury. These instructions should be follo wed to avoid the possibility of misapplication or mi sadjustment.

WARNING: Make sure 120VAC (60 Hz) input power is turned off at facility's main circuit breaker before proceeding with installation.

General Templating Information:

- Before beginning the installation, verify that the door frame is properly reinforced and is well anchored in the wall.
- Unreinforced hollow metal frames and al uminum frames should be prepared and fitted with 1/4-20 blind rivet nuts, furnished by others.
- Conceal ed electrical conduit and concealed switch or sensor wires should be pulled to the frame before proceeding.

Fasteners for Frame:

- 1/4-20 machine screws for hollow metal and al uminum.
- No. $14 \times 2-3 / 4$ " (70mm) long sheet metal screws for wood.

Fasteners for Door:

- 1/4-20 machine screws.
- $3 / 8$ " diameter x 1-5/8" (41mm) long sex nut.

Electrical Information:

- Maximum current draw of unit is 0.6 amps .
- Breaker Switch protects the motor assembly and inverter; and has a 3 amp rating.
- Maximum wire sizeis:

14AWG at terminals 1 thru 4 on Accessory Terminal . 18AWG at terminals 22 thru 25 on "T1" Power Input Terminal.

Frame Reinforcement Table

Hollow Metal Door Frame Reinforcing		
Frame Material	Reinforcing	
	Recommended	Min. Required
$\begin{array}{r} 12 \mathrm{Ga} \\ .1046(2.66) \end{array}$	$\begin{array}{r} 12 \mathrm{Ga} \\ .1046(2.66) \end{array}$	$\begin{gathered} 18 \mathrm{Ga} \\ .0478(1.21) \end{gathered}$
$\begin{gathered} 14 \mathrm{Ga} \\ .0747(1.90) \end{gathered}$	$\begin{gathered} 10 \mathrm{Ga} \\ .1343(3.41) \end{gathered}$	$\begin{gathered} 12 \mathrm{Ga} \\ .1046(2.66) \\ \hline \end{gathered}$
$\begin{gathered} 16 \mathrm{Ga} \\ .0598(1.52) \end{gathered}$	$\begin{gathered} 10 \mathrm{Ga} \\ .1343(3.41) \end{gathered}$	$\begin{gathered} 12 \mathrm{Ga} \\ .1046(2.66) \end{gathered}$
$\begin{gathered} 18 \mathrm{Ga} \\ .0478(1.21) \end{gathered}$	$\begin{gathered} 8 \mathrm{Ga} \\ .1644(4.18) \end{gathered}$	$\begin{gathered} 10 \mathrm{Ga} \\ .1343(3.41) \end{gathered}$

Technical Data

Input power:	$120 \mathrm{VAC}, 60 \mathrm{~Hz}$
Power consumption:	.6 amps
Circuit breaker:	3 amps
Power supply:	24 V DC, max. 1.1 Amp.
Door width:	$28-48$ " (71-122 cm)
Door weight:	$100-250 \mathrm{lb} .(45-113 \mathrm{~kg})$
Door opening angle:	up to 110° Pull side; up to 170 Push side; Manually to $180{ }^{\circ}$ ' Pus/Pull side
Hold open time:	$5-30$ seconds (A.D.A. 5 secondsmin.)

ASSA ABLOY

Component Layout

Included with 5730 and 5740

Optional Mounting Support

ADA / ANSI / UL Information

AmericansWithDisabilitiesAct(A.D.A.)
These door operatorscan beinstall ed and adjusted to conform with A.D.A.regulations.

ANSI Standards

ANSI A117.1 - These door operators permit door assemblies to conform to the requirements of this specification "for buil ldings and facilities- providing accessibility and usability for physically handicappedpeople"

- ANSI A156.19 - These products are designed to conform to this specification "for power assist and low energy power operateddoors"
U.L.Listing

UnderwritersLaboratories, Inc. Iisted for use on fire and smoke barrier door assemblies when the $120 \mathrm{VAC}(60 \mathrm{~Hz})$ power input is supplied through the normally closed alarm contacts of a compatible UL Listed alarm system or alarm panel.

ASSA ABLOY

1. Stop (Push) Side - Initial Frame Holes

Left hand door illustrated.
A. Using template, locate and prepare holes in the frame.
B. Drill \#7 and tap 1/4-20 Machine Screws or Self-Drilling Screws (2 places).

Door Opening Angle	A	B
Up to 110°	$1-9 / 16(40)$	$29-3 / 16(741)$
110° to 180°	$-15 / 16(-24)^{*}$	$26-11 / 16(678)$

* This dimension will be on opposite side of hinge centerline shown below.
q
of Hinge

2. Stop (Push) Side - Initial Wall Prep

For wood or masonry framing, blocking (supplied by others) is required for proper support of operator. Thickness is dependent upon Frame Return. Material must comply with local codes. Failure to properly support top portion of operator will void warranty.
A. For wood framing, screw blocking into wall studs.
B. Lab anchoring required for masonry walls.

If above Step 2 for Initial Wall Prep is not available, shown to the right are two options:

- Transom Angle Bracket
- Storefront Bracket

ASSA ABLOY

3. Stop (Push) Side - Unit Mounting

A. Install (2) $1 / 4-20 \times 1$ " machine screws or $1 / 4$ " selfdrilling screws into holes drilled in Step 1. Leave 1/8" gap between bottom of screw head and frame.
B. i)Install Unit Assembly over screws in previous step and ii) slide Unit Assembly toward Latch edge of door.

C. Secure (2) screws.

Note: Level is incorporated into back plate to aid in instal lation.

4. Stop (Push) Side - For Conceal ed Wiring Only

A. Mark conduit holes using back plate as template.
D. Install conduit in frame, if desired.
B. Remove back plate.
E. Reinstall back plate and secure (2) screws.
C. Drill (1) Ø7/8" holes for accessory wiring only

5. Stop (Push) Side - Remaining Mounting Screws

A. Using Back Plate as template, locate and prepare holes in the frame.
B. Drill \#7 holes and tap 1/4-20 for Machine Screws or Self Drilling Screws (7 places).
C. Install 1/4-20 x 1 " machine screws or $1 / 4$ " selfdrilling screws into holes unless noted otherwise.
D. Flat head screw must be used to go through the
mounting hold of the door closer body.
E. Support behind back plate is require\$see Step 2). If using Storefront or Transom Bracket, LH door will use 1/4-20 $\times 3 / 8$ flat head screw between closer body and motor; RH door will use (2) 1/4-20 x $3 / 8$ screws for top support holes.

6. Stop (Push) Side - For SurfaceWiring Only

A. Connect wiring conduit to holes in side of back plate.
B. When installing cover, appropriate knockout will need to be removed.

7. Stop (Push) Side - Prep Door for Arm Shoe

A. Using template, locate and prepare holes in door.
B. Drill $3 / 8^{\prime \prime}$ thru (2 places) for sex bolts.

8. Stop (Push) Side - Mount Arm Shoe to Door

9. Stop (Push) Side - Attach Arm to Closer

A. Install main arm onto pinion shaft of unit at a 90° angle to the door frame. Align arm mark " S " with the flat corner of the pinion shaft square (see figure 1 at right).
B. Secure main arm to pinion with 1/4-20 Flange Head Screw provided (see figure2 at right).
Tighten screw with 7/16" wrench or socket.

Figure 1

ASSA ABLOY

9. Stop (Push) Side - Attach Arm to Closer Cont.

C. PRELOAD ARM (seefigure 3 at right): Remove 1/4-20 hex head screw on adjusting rod and insert adjusting rod into arm slide. Reinstall 1/4-20 screw and leave loose. Rotate main arm away from hinge edge until adjusting rod and arm are perpendicular (at a 90° angle) to the doo rframe. Tighten the 1/4-20 hex head screw on the adjusting rod to secure arm in this new position.

10. Stop (Push) Side - Adjust Closing Power

A. Adjust closing power of unit (See illustration at right) - Using a $1 / 8$ " allen wrench, turn the power adjustment shaft clockwise to increase door closing power. Door control is shipped set at midpoint of power setting. Maximum closing power can be achieved with $8\left(360^{\circ}\right)$ clockwise turns of the power adjustment screw.

11. Stop (Push) Side - Adjust Closing Power

A. Adjust Hydraulic valves using a $1 / 8$ " hex wrench to obtain proper door closing speeds. See following illustrations.

Closing Cycle - Make adjustments, as necessary, to the Sweep Speed "S" valve and Latch Speed "L" valve.
Note: A.D.A. requires that from an open position of 70°, the door will take at least 3 seconds to move to a point 3 " (75 mm) from the latched position measured at the leading edge of the door.
B. Refer to Table 1 below for recommended minimum opening / closing times per ANSI/BHMA A156.19.

Opening Cycle - Adjust Backcheck, "B" valve, as necessary, for hydraulic resistance to door opening in the backcheck range.
Note:Too much Backcheck, "B" valve, can affect the operation of the units pump, preventing units from fully opening the door. This valve may require fine tuning after all other adjustments have been made.

Table 1 - Minimum Opening / Closing Times for ANSI/BHMA A 156.19

Door Leaf Width - Inches (mm)	Door Weight in Pounds (kg)				
$30(762)$	3.0	3.0	3.0	3.0	3.5
$36(914)$	3.0	3.5	3.5	4.0	4.0
$42(1067)$	3.5	4.0	4.0	4.5	4.5
$48(1219)$	4.0	4.5	4.5	5.0	5.5

Backcheck - adjust the backcheck val ve to have a minimum opening time to backcheck or 80 degrees (whichever comes first) based on Table 1.

Closing Time- adjust Latch and Swep val ves to have a minimum closing time from 90 degrees to Latch Check or 10 degrees (whichever comes first) based on Table 1. Matrix values are in seconds.

12. Input Power Configurations

CONCEALED WIRING

Thread conduit fitting into backplate as shown for low voltage control wiring. CHECK LOCAL CODES. Pull conduit out of header and attach to conduit fittings before mounting. Secure operator to doorframe.

SURFACE WIRING

Thread conduit fitting into backplate as shown for low voltage control wiring. CHECK LOCAL CODES. Pull conduit out of header and attach to conduit fittings before mounting Secure operator to doorframe.

13. Input Power Configurations

Standard 3-prong Power Input Receptacle to be placed within shaded region only due to length of power supply cord provided.

14. Final Electrical and Mechanical Setup

A. Confirm all mechanical adjustments have been made and wiring connected per Page 7 and 8.
B. Turn on facility's main circuit breaker.
C. Turn power to unit on at the Unit Power Switch and turn the Breaker Switch to "RESET".

D. Using a short jumper cable, jump terminals 1 and 2 , see Fig. 2 below, to activate unit. When door reaches 20°, switch Breaker Switch to " OFF position cutting power to the unit. Allow door to fully close (door may be manually pulled closed).

14. Final Electrical and Mechanical Setup Continued

E. Adjust Closing Position Magnet (See Fig. 3) - With door in the closed position, use finger to slide Closed Position Magnet so it aligns di rectly with the Reed

F. Adjust Open Position Magnet - Use fingers to slide

F cont. Open Position Magnet 180° from Open Position Magnet.
G. Flip Breaker Switch to "RESET" to turn power on. Jump terminals 1 and 2 (as shown in Fig. 2) to activate door. Note open position of the door. Allow door to close.
H. Use finger to readjust the Open Position Magnet to desired door open position.
I. Repeat Step G to verify door open position.
J. Make all connections necessary for any accessories to the 4-position Accessory Terminal (see Pages 10-11).
K. Make necessary adjustments to inverter (see Page 9). Replace cover and cover screws.

Inverter Details

Standard Function with Switches

Notes:
1.Power input to Door Operator Unit is at "T1" Power Input Terminal (not shown) 120VAC 60 Hz .

Operation:

- Doors are normally closed.
- Activating either switch will open both doors. Door will close after hold open time delay haselapsed.

$\left.\begin{array}{l}\text { Wall Switch, Card } \\ \text { Reader, Key Switch, }\end{array} \quad \begin{array}{l}\text { Normally Open Momentary } \\ \text { dry contacts }\end{array}\right)$ etc.

Radio Frequency Function Option

Notes:
1.Power input to Door Operator Unit is at "T1" Power Input Terminal (not shown) 120VAC 60 Hz .
2. Radio Frequency Feature can be purchased as a separate kit.
1.1A 24V Power Supply

Operation:

- Door is normally closed.
- Activating wireless switch or hand held wireless transmitter will open the door.
- Door will close after hold open delay elapses.

Troubleshooting

Fault	Possible reasons why	Remedies'Explanations
The door does not open -	Control switch is set to OFF position	Change the setting of the ON/OFF switch
	Circuit breaker is set to OFF position	Reset circuit breaker to the ON position
	Electrical power is missing	Check the electrical power switch
	Activation unit does not function	Jump activation input
-The motor starts	Motor is driving in wrong direction	Flip Door Mounting Dip Switch to other direction
	Something jammed beneath the door	Remove object
	Arm has come loose	Re-time and re-install arm.
The door does not dose	Spring tension too low	Increase spring tension per preceding instructions
	Arm has come loose	Re-time and re-install arm.
	Something jammed beneath the door	Remove object

ASSA ABLOY

Fail Safe Electromagnetic Lock 24VDC Wiring

Notes:

1.Power input to Door Operator Unit is at "T1" Power Input Terminal (not shown) 120VAC 60 Hz .
2.Unit's Relay Rating: 30VDC @ 1A or 125VAC @ .5A

JMP503

Jumper Settings

Place jumper to upper position for normally closed operation or to lower position for normally open operation.

Operation:

- Door isnormal ly cl osed and latched.
- Door isnormally closed and latched. open. Door will closeafter hol dopentimedel ay hasel apsed.
- Thedoor will unlock during powerfailure.

Optional 1.1A 24V

,
ed. r

[^0]

Wall Switch, Card Reader, Key Switch, etc.
$\binom{$ Normally Open Momentary }{ dry contacts }

Fail Secure/ Fail Safe Electric Strike Wiring

Notes:

1.Power input to Door Operator Unit is at "T1" Power Input Terminal (not shown) 120VAC 60 Hz .
2.Unit's Relay Rating for strike interface: 30VDC @ 1A or 125VAC @ .5A

Operation:

- Door isnormally cl osed and latched.
- Activating switch will unl ock theel ectricstrikeand the door will automatically open. Door will close after hol d open timedel ay hasel apsed.
- For Fail SecureStrike
during power failure.
$\frac{\text { For Fail SafeStrike }}{\text { during power failure. }}$ - The door will remailocked will remai Ionlocked

433MHz Receiver User's Guide

\#2	Description	Function
OFF	0.5 Hold Time	Relay will remain active 0.5 sec after loss of activation.
ON	10s Hold Time	Relay will remain active 10 sec after loss of activation.

- Always stop pedestrian traffic through the doorway when performing tests that may result in unexpected reactions by the door.
- Ensure compliance with all appli cable safety standards upon completion of installation.

Hand-Held Configuration

1. Set dip switches to the receiver to the desi red activation cycle (dip switch 1 - Toggle or Pulse hold.
2. Press either Learn w/ Delay Button or Learn w/o Delay Button on the receiver depending on the ac delay learn is sel ected, adjust potentiometer to counterclockwise limit, 0 second delay). Red LED o learn cycle is complete, adjust potentiometer to desi red delay time ($0-30 \mathrm{sec}$).
3. Depress transmitter button repeatedly until Blue LED on the receiver illuminates (indicating reception of signal from transmit ter). NOTE: Repeat Steps 2 - 3 to program additional transmitters.
4. To test the system, depress transmitter button (Red LED on Transmitter will illuminate) and obse rve that the Blue LED illumi nates on the receiver. This indicates that the relay has been activated.

Push Plate Configuration

1. Before beginning, it is easiest to have al ready prepared the installation of the push plate.
2. Connect the wires from the transmitter to the NO and COM contacts of the push plate's switch.
3. Follow Steps 1-4 (Hand-Held Configuration); depress the push plate to activate the transmitter
4. Attach the transmitter to the inside of the electrical box and complete the installation.

Removing Transmitter Code(s)

SingleTransmitter Code:

- Press both Delay and No Delay Buttons simultaneously until Red LED flashes once (approximately 1 se
cond).
- Press transmitter button twice within 10 seconds and the transmitter code will be deleted.

All Transmitter Codes:

- Press and hold both Delay and No Delay Buttonssimultaneously until Blue LED illuminates then relea seconds).
and dip switch 2-0.5s or 10 s
tivation requirements (if n receiver will flash. After

ASSA ABLOY

This Page Left Blank

Removable Template - Stop (Push) Side - RH Door

- Do not scale drawing.
- Right hand door shown.
- All dimensions given in inches (mm).
- Maximum frame reveal is $1 / 8^{\prime \prime}$ $(3 \mathrm{~mm})$ for this application.

ASSA ABLOY

Removable Template - Stop (Push) Side - LH Door

- Do not scale drawing
- Left hand door shown.
- All dimensions given in inches (mm).
- Maximum frame reveal is $1 / 8^{\prime \prime}(3 \mathrm{~mm})$ for this application.

This Page Left Blank

[^0]: n

