ENVIRONMENTAL PRODUCT DECLARATION

CORBIN RUSSWIN

ML2000 SERIES MORTISE LOCK

The Corbin Russwin ML2000 Series Mortise Lock, is an ANSI/BHMA A156.13 Series 1000 Grade 1 mechanical mortise lock. It has a reversible latch with stainless steel insert and an independent non-handed stainless steel deadlatch.

Corbin Russwin

ASSA ABLOY

ASSA ABLOY is committed to providing products and services that are environmentally sound throughout the entire production process and the product lifecycle. Our unconditional aim is to make sustainability a central part of our business philosophy and culture, but even more important is the job of integrating sustainability into our business strategy. The employment of EPDs will help architects, designers and LEED-APs select environmentally preferable door openings. The Corbin Russwin ML2000 Series Mortise Lock EPD provides detailed requirements with which to evaluate the environmental and human health impacts related to producing our door openings. ASSA ABLOY will continue our efforts to protect the environment and health of our customers/end users and will utilize the EPD as one means to document those efforts.

ENVIRONMENTAL PRODUCT DECLARATION

Corbin Russwin
ML2000 Series Mortise Lock

According to EN 15804 and ISO 14025

Dual Recognition by UL Environment and Institut Bauen und Umwelt e.V.

This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. Exclusions: EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. Accuracy of Results: EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. Comparability: EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

PROGRAM OPERATOR	UL Environment									
DECLARATION HOLDER	Corbin Russwin, an ASSA ABLOY	Group company								
ULE DECLARATION NUMBER	4786545067.127.1									
IBU DECLRATION NUMBER	BER EPD-ASA-20150143-IBA1-EN									
DECLARED PRODUCT	ML2000 Series Mortise Lock									
REFERENCE PCR	IBU: PCR Locks and fittings (mecl 2014	nanical & electromechanical locks & fittings), 07-								
DATE OF ISSUE	May 18, 2015									
PERIOD OF VALIDITY	5 years									
	General information Product / Product description									
CONTENTS OF THE	LCA calculation rules									
DECLARATION	LCA scenarios and further technic	cal information								
	LCA results References									
The PCR review was conducted	by:	IBU - Institut Bauen und Umwelt e.V.								
		PCR was approved by the Independent Expert Committee (SVA)								
The CEN Norm EN 15804 serves was independently verified in accumulations.	as the core PCR. This declaration ordance with ISO 14025 by	ubl								
□ INTERNAL	⊠ EXTERNAL	Wade Stout								
This life cycle assessment was in with EN 15804 and the reference	dependently verified in accordance PCR by:	IBU – Institut Bauen und Umwelt e.V.								

1. General Information

Corbin Russwin Programme holder

IBU - Institut Bauen und Umwelt e.V.

Panoramastr. 1 10178 Berlin Germany

Declaration number

EPD-ASA-20150143-IBA1-EN

This Declaration is based on the Product Category Rules:

IBU: PCR Locks and fittings (mechanical & electromechanical locks & fittings), 07-2014 (PCR tested and approved by the independent expert committee)

Nermanes

Issue date

18.05.2015

Valid to

17.05.2020

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

Dr.-Ing. Burkhart Lehmann (Managing Director IBU)

ML2000 Series Mortise Lock

Owner of the Declaration

Corbin Russwin 225 Episcopal Rd Berlin, CT 06037 USA

Declared product / Declared unit

The declaration represents 1 mortise lock of the following types:

- Corbin Russwin ML2000 Series Mortise Lock

inclusive of lock body, latches, levers, roses, strikes and all mounting hardware.

Scope:

This EPD is based on the full lifecycle of 1 Corbin Russwin ML2000 Series Mortise Lock. Data was collected from the lock case manufacturer in Berlin, Connecticut (US). The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Standard EN 15804 serves as the core PCR Independent verification of the declaration and data according to ISO 14025

internally

externally

2. Product

2.1 Product description

The Corbin Russwin ML2000 Series Mortise Lock, is an ANSI/BHMA A156.13 Series 1000 Grade 1 mechanical mortise lock. It has a reversible latch with stainless steel insert and an independent non-handed stainless steel deadlatch.

The ML2000 is available with 41 different mechanical locking functions, optional deadbolt and multiple lever options

- ANSI/BHMA A156.13 Series 1000 Grade 1 Certified
- Meets A117.1 Accessibility Code

Corbin Russwin's products meet building codes that require hurricane, windstorm and FEMA certifications, including some of the most stringent building codes as specified in the Florida Building Code, Miami Dade Code and the International Building Code. Refer to the

Corbin Russwin Website (www.corbinrusswin.com) for specific code compliance listings for both the lock hardware and other door components.

2.2 Application

The locks are designed for single or double leaf doors with mullions. The locks are typically installed in commercial buildings, such as

- · Commercial campuses
- Colleges
- · Detention centers
- Dormitories
- Hospitals
- Warehouses
- Psychiatric wards
- · Any high abuse applications

2.3 Technical Data

The following table lists the technical properties of Corbin Russwin ML2000 Series Mortise Lock:

Technical data

Item	Value					
Backset	2-3/4" (70mm)					
Door Thickness	1-3/4" (44mm) thick standard					
Bevel	Front adjustable at any angle from					
	flat to bevelled 1/8" (3mm) in 2"					
	(51mm)					
Door prep	ANSI/BHMA A156.115 or					
	A156.115W modified per template					
Handing	field reversible					
Keying	Can be masterkeyed or grand					
	masterkeyed.					

2.4 Placing on the market / Application rules

The products are subject to UL marking. Relevant norms are: ANSI/BHMA A156.13 American Standard for Mortise locks.

2.5 Delivery status

Delivered as a complete unit, inclusive of lockbody, trim, strike and fasteners or as separate lock case. Delivered in a box size 9" x 5.5" x 4.375" (229 x 140 x 111 mm)

2.6 Base materials / Ancillary materials

The average composition of the Corbin Russwin Mortise lock is as following:

Component	Percentage in mass (%)
Brass	21.6
Copper	1.05
Stainless Steel	22.5
Steel	51.07
Zinc	3.03
Others	0.75
Total	100.0

2.7 Manufacture

Products are manufactured and assembled in the United States and are supported by tier-1 supplier in Mexico. The components come from processes such as stamped steel, zinc and steel casting.

2.8 Environment and health during manufacturing

ASSA ABLOY is committed to integrating our sustainability efforts across the organization. Our priorities are to: reduce resource and energy consumption; reduce carbon emissions; improve water and waste management; improve health and safety performance in operations; improve sustainability performance within our supply chain and enhance the sustainability performance in ASSA ABLOY's supply of door opening solutions. Inspections, audits, and reviews are conducted periodically to ensure that applicable standards are met and environmental management systems are evaluated.

Our Code of Conduct covers business ethics, workers' rights, human rights, environment and health & safety, consumer interests and community outreach. It provides the framework for ASSA ABLOY's daily operations.

- The Berlin facility complies the requirements of the Code of Federal Requirements (CFR) 29 part 1910 General Industry and are under the oversight of the United States Department of Labor and the Occupational Safety and Health Administration.
- The Berlin facility is currently certified to ISO 9001-2008. Upgrading to 9001-2014 in 2015. Lab Certification audit to ISO 17025 in Dec 2014. Working towards ISO 14000 with current goal of 1st qtr 2015.
- Any waste metals (chips) during machining are separated and recycled.
- Waste cleaners and rinses are processed internally in our Waste Water Treatment facility.
- Waste solids are packaged and shipped offsite for treatment by a CT DEEP approved waste handler.

2.9 Product processing/Installation

Corbin Russwin locks are distributed through, and installed by trained technicians, such as locksmiths or security technicians. Preparation of doors and frames are conducted at the door manufacturer's production site.

2.10 Packaging

All packaging is fully recyclable. The packaging material is composed by cardboard (app. 70%) and plastic foil (app. 30%).

Material	Value (%)
Cardboard/paper	91.03
Plastics	8.97
Total	100.0

2.11 Condition of use

Locks require no maintenance.

2.12 Environment and health during use

There is no harmful emissive potential. No damage to health or impairment is expected under normal use corresponding to the intended use of the product.

2.13 Reference service life

The reference service life of 30 years is based on a typical installation of a Corbin Russwin Mortise lock as a security lock operated when the facilities are to be closed or opened. If operations per day exceeds that typical wear the locks are exposed to the life time is limited to 1,000,000 cycles in accordance with ANSI/BHMA A156.13

Influences on ageing when applied in accordance with the rules of technology.

2.14 Extraordinary effects

Fire

Suitable for use in fire and smoke doors (listed by Underwriters Laboratories)

Water

Contain no substances that have any impact on water in case of flood.

Mechanical destruction

No danger to the environment can be anticipated during mechanical destruction.

2.15 Re-use phase

The product is possible to re-use during the reference service life and be moved to one door to another. The majority, by weight, of components are steel, iron and zinc which can be recycled. The lock can either be sent back to Corbin Russwin for recycling or to a professional recycling service provider. The plastic components can be used for energy recovery in an incineration process.

2.16 Disposal

Loss Construction, which has no recycling potential, waste is sent to landfill.

2.17 Further information

Corbin Russwin 225 Episcopal Rd Berlin, CT 06037 USA Tel 800-543-3568 www.corbinrusswin.com

3. LCA: Calculation rules

3.1 Declared Unit

The declaration refers to the functional unit of 1 piece of Corbin Russwin ML2000 Series Mortise Lock as specified in Part B requirements on the EPD for PCR Locks and fittings: (mechanical & electromechanical locks & Fittings)

Declared unit

Name	Value	Unit
Declared unit	1	piece of lock
Mass	1.933	kg
Conversion factor to 1 kg	0.517	-

3.2 System boundary

Type of the EPD: cradle to gate - with Options The following life cycle phases were considered:

Production stage:

- A1 Raw material extraction and processing
- A2 Transport to the manufacturer and
- A3 Manufacturing

Construction stage:

- A4 Transport from the gate to the site
- A5 Packaging waste processing

The use stage:

• B2 - Maintenance (cleaning of the locks)

End-of-life stage:

- C2 Transport to waste processing
- C4 Disposal (landfill)

This includes provision of all materials, products and energy, packaging processing and its transport, as well as waste processing up to the end-of waste state or disposal of final residues.

 D - Declaration of all benefits or recycling potential from EOL and A5.

3.3 Estimates and assumptions

EoL:

In the End-of-Life phase, for all the materials which can be recycled, a recycling scenario with 100% collection rate was assumed.

3.4 Cut-off criteria

In the assessment, all available data from the production process are considered, i.e. all raw materials used, auxiliary materials (e.g. lubricants), thermal energy consumption and electric power consumption - including material and energy flows contributing less than 1% of mass or energy (if available). In case a specific flow contributing less than 1% in mass or energy is not available, worst case assumption proxies are selected to represent the respective environmental impacts.

Impacts relating to the production of machines and facilities required during production are out of the scope of this assessment.

3.5 Background data

For life cycle modeling of the considered products, the GaBi 6 Software System for Life Cycle Engineering, developed by PE INTERNATIONAL AG, is used /GaBi 6 2013/. The GaBi-database contains consistent and documented datasets which are documented in the online

GaBi-documentation /GaBi 6 2013D/.

To ensure comparability of results in the LCA, the basic data of GaBi database were used for energy, transportation and auxiliary materials.

3.6 Data quality

The requirements for data quality and background data correspond to the specifications of the /IBU PCR PART A/.

PE INTERNATIONAL performed a variety of tests and validations during the commission of the present study in order to ensure its quality of the present document and results. This obviously includes an extensive review of project-specific LCA models as well as the background data used..

The technological background of the collected data reflects the physical reality of the declared products. The datasets are complete and conform to the system boundaries and the criteria for the exclusion of inputs and outputs.

All relevant background datasets are taken from the GaBi 6 software database. The last revision of the used background data has taken place not longer than 10 years ago.

3.7 Period under review

The period under review is 2013/14 (12 month average).

3.8 Allocation

Regarding incineration, the software model for the waste incineration plant (WIP) is adapted according to the material composition and heating value of the combusted material. In this EPD, the following specific life cycle inventories for the WIP are considered for:

- Waste incineration of plastic
- Waste incineration of paper

Regarding the recycling material of metals, the metal parts in the EoL are declared as end-of-waste status.

Thus, these materials are considered in module D. Specific information on allocation within the background data is given in the GaBi dataset documentation.

3.9 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

4. LCA: Scenarios and additional technical information

The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment if modules are not declared (MND).

Installation into the building (A5)

Name	Value	Unit
Output substances following waste		
treatment on site (Paper and plastic	0.35	kg
packaging)		

Reference service life

Name	Value	Unit
Reference service life	30	а

Maintenance (B2)

Name	Value	Unit
Other resources – detergents	0.1	kg/a
Water for cleaning	0.1	kg/a

End of life (C1-C4)

Name	Value	Unit
Collected separately Brass, Copper, Stainless Steel, Steel, Zinc	1.918	kg
Collected as mixed construction waste – construction waste for landfilling	0.015	kg
Recycling Brass, Copper, Stainless Steel, Steel, Zinc	1.918	kg
Landfilling - Construction waste for landfilling	0.015	kg

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Name	Value	Unit
Collected separately waste type (including packaging)	2.282	kg
Recycling Brass	18.3	%
Recycling Copper	0.89	%
Recycling StainlessSteel	19.05	%
Recycling Steel	43.25	%
Recycling Zinc	2.56	%
Reuse Paper packaging (from A5)	13.94	%
Reuse Plastic packaging (from A5)	1.37	%
Loss Construction waste for landfilling (no recycling potential)	0.64	%

5. LCA: Results

Results shown below were calculated using CML 2000 - Apr. 2013 Methodology.

DESCRIPTION OF TH	Results shown below were calculated using CML 2000 – Apr. 2013 Methodology.															
DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)														_ARED)		
PRODUCT STAGE ON PR	TRUCTI ROCESS AGE			US	SE STA	GE		END OF LIFE STAGE				NEFITS AND LOADS EYOND THE SYSTEM DUNDARYS				
Raw material supply Transport Manufacturing Transport from the gate to the site	Assembly	nse	Maintenance	Repair	Replacement ¹⁾	Refurbishment ¹⁾ Operational energy		esn	Operational water use	De-construction demolition		De-construction demolition		Waste processing	Disposal	Recovery- Recycling- potential
A1 A2 A3 A4	A5	B1 B	32 I	В3	B4	B5	В	6	B7	C1	C2	C3	C4	D		
X X X X	X	IND 3	K M	IND	MND	MND	MN	ID I	MND	MND	Χ	MND	Х	Χ		
RESULTS OF THE LC Lock	A - ENVI	RONME	NTA	L IM	PACT	: One	pied	ce o	f Corl	bin Ru	SSW	vin ML20	00 Serie	s Mortise		
Parameter Parame	eter		nit	A	1 - A3	A			A 5	B2		C2	C4	D		
GWP Global warming Depletion pote			D₂-Eq.] FC11-		7E+01	8.98E			4E-01	-2.31E+		7.48E-02	6.12E-02	-2.31E+00		
ODP stratospheric of Acidification potent	zone layer	E	q.]	2.5	2E-09	4.30E	≣-13	2.22	2E-12	6.71E-1	11	3.58E-13	1.84E-13	-1.57E-10		
water	r	[kg S0	D ₂ -Eq.]		2E-02	4.11E			6E-04	4.80E-0		3.43E-04	1.56E-05	-1.14E-02		
Correction notantial	Eutrophication potential Formation potential of tropospheric				4.55E-03				0E-05	2.85E-0		7.82E-05	1.18E-06	-7.81E-04		
POCP Ozone photochem ADDE Abiotic depletion po	nical oxidants	[kg Etnen Eq.]		5.0	5.04E-03		-1.33E-04 7		5E-06	9.33E-04		-1.10E-04	7.57E-07	-1.11E-03		
fossil reso	urces	[kg S	[kg Sb Eq.]		1.95E-03		3.38E-09 1		7E-08	9.32E-07		2.82E-09	4.04E-09	-8.87E-04		
ADPF Abiotic depletion po	es	ĮΝ	/J]	2.10E+02					9E-01	5.86E+01		1.03E+00	2.59E-02	-2.48E+01		
RESULTS OF THE LC	A - RESC	URCE	USE:	One	e piec	e of (Corbi	in R	ussw	in ML2	2000) Series	Mortise	Lock		
Parameter Pa	rameter		Ur	nit	A1 - A	A3	3 A4		A5	B2		C2	C4	D		
PERE Renewable prim	ary energy a	as energy	[M	IJ]	3.17E+	-01 -			-				-	-		
Renewable prim			[M	IJ]	0.00E+	+00 -			-			-	-	-		
PERT Total use of rene			IJ]	3.17E+	+01 4.	01 4.88E-02		.34E-02	1.18E+02		4.07E-02	1.90E-03	-1.86E+00			
DENIRE Non renewable		ergy as	[M	IJ]	2.38E+	+02	02 -		-	-		-	-	-		
PENRM Non renewable		ergy as	[M	IJ]	0.00E+	+00	-		-	-		-	-	-		
PENRT Total use of no		primary	[M	IJ]	2.38E+	+02 1.	24E+0	00 1	.73E-0	1 6.21E	+01	1.04E+00	2.88E-02	-2.63E+01		
SM Use of sec	ondary mat		[k	•	3.30E+		.00E+0		.00E+0							
RSF Use of renewa			[M		0.00E+		00E+0		.00E+0			0.00E+00 0.00E+00				
	et fresh wat		[m	•	1.27E		.45E-0		.44E-03			2.87E-05				
RESULTS OF THE LC		PUT FL	ows	ANI	O WA	STE C	CATE	GO	RIES	: One p	oiec	e of Cor	bin Rus	swin		
	Series Mortise Lock er Parameter Unit				- A3	A4		A!	5	B2		C2	C4	D		
Parameter Paran		4 LI	(g]		E-03	2.83E-		1.19E		3.63E-0		2.36E-06	2.01E-06	-7.72E-05		
HWD Hazardous wa				0.72	E-01	1.56E-	-04	1.63E-02		-02 3.56E-01		.56E-01 1.30E-04		-1.71E-01		
HWD Hazardous wa	waste dispo	sed [l	(g]								_		5.70E-03 1.15F-06			
HWD Hazardous wa	waste dispo	sed [l	(g] (g] (g]	1.09		1.63E- 0.00E+	-06	9.65E 0.00E	E-06	1.38E-0: 0.00E+0	3 1	1.36E-06 0.00E+00	1.15E-06 0.00E+00	-5.77E-04		
HWD Hazardous wa NHWD Non hazardous RWD Radioactive wa CRU Components MFR Materials for	waste disponante este dispose of for re-use or recycling	sed [H d [H [H	(g] (g]	0.00 0.00	E-02 E+00 E+00	1.63E- 0.00E+ 0.00E+	-06 +00 +00	9.65E 0.00E 3.10E	E-06 E+00 E-01	1.38E-0 0.00E+0 0.00E+0	3 1 0 0 0 0	1.36E-06 0.00E+00 0.00E+00	1.15E-06 0.00E+00 0.00E+00	-5.77E-04 -		
HWD Hazardous wa NHWD Non hazardous wa RWD Radioactive was CRU Components	waste dispo aste dispose s for re-use or recycling nergy recove	sed [k d [k [k ry [k	(g] (g]	0.00 0.00 0.00	E-02 E+00 E+00	1.63E- 0.00E+	-06 +00 (+00 (9.65E 0.00E	E-06 E+00 E-01 E+00	1.38E-0 0.00E+0	3 1 0 0 0 0	1.36E-06 0.00E+00	1.15E-06 0.00E+00	-5.77E-04 -		

6. LCA: Interpretation

This chapter contains an interpretation of the Life Cycle Impact Assessment categories. Stated percentages in the whole interpretation are related to the overall life cycle, excluding credits (module D).

The production phase (modules A1-A3) contributes between 57% and 99% to the overall results for all the environmental impact assessment categories hereby considered, except for the eutrophication potential (EP), for which the contribution from the production phase accounts for app. 13%.

Within the production phase, the main contribution for all the impact categories is the production of steel mainly due to the energy consumption on this process. Steel accounts in total with app. 76% to the overall mass of the product, therefore, the impacts are in line with the mass composition of the product. The

environmental impacts for the transport (A2) have a negligible impact within this stage.

Relatively high impact on EP (85%) during the maintenance phase (module B2) is a result of generated waste water during maintenance of the product. Eutrophication is the enrichment of nutrients in a certain place and it can be aquatic or terrestrial. Waste water contributes to eutrophication therefore, as expected, it is mainly related with the maintenance of the product (B2).

In the end-of-life phase, there are loads and benefits (module D, negative values) considered. The benefits are considered beyond the system boundaries and are declared for the recycling potential of the metals and for the credits from the incineration process (energy substitution).

7. Requisite evidence

Not applicable in this EPD.

8. References

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin (pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013-04 www.bau-umwelt.de

IBU PCR Part A

IBU PCR Part A: Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report. April 2013

www.bau-umwelt.de

IBU PCR Part B

IBU PCR Part B: PCR Guidance-Texts for Building-Related Products and Services. From the range of Environmental Product Declarations of Institute Construction and Environment e.V. (IBU). Part B: Requirements on the EPD for Locks and fittings. www.bau-umwelt.com

ANSI/A117.1

ANSI/A117.1: Accessible and Usable Buildings and Facilities

ANSI/BHMA A156.13

ANSI/BHMA A156.13: Mortise Locks

ASTM F1577-95b

ASTM F1577-95b: Detention Locks for Swinging Doors

ISO 14001ISO 14001: Environmental management systems - Requirements with guidance for use (ISO 14001:2004 + Cor. 1:2009)

ISO 14025

ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804: 2012+A1:2014: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

Florida Building Code

Florida Building Code: 2010 Florida Building Code, Building contains substantial copyrighted material from the 2009 International Building Code which is a copyrighted work owned by the International Code Council, Inc

http://www2.iccsafe.org/states/florida_codes/

GaBi 6 2013

GaBi 6 2013: Software-System and Database for Life Cycle Engineering. Copyright. TM. Stuttgart, Echterdingen, 1992-2013.

GaBi 6 2013D

GaBi 6 2013D: Documentation of GaBi 6: Software-System and Database for Life Cycle Engineering. Copyright, TM. Stuttgart, Echterdingen, 1992-2013. http://documentation.gabi-software.com/

ICC IBC(2009)

ICC IBC (2009): International Building Code. A member of the international code family®. www.iccsafe.org

Miami Dade Code

© 2014 Miami-Dade County government. http://www.miamidade.gov

UL and ULc Standards

ULC Standards develops and publishes standards and specifications for products having a bearing on fire, life safety and security, crime prevention, energy efficiency, environmental safety, security of assets and

facilities, live working and workplace safety and other areas. ULC Standards is accredited by the Standards Council of Canada as a consensus based Standards Development Organization under the National Standards System of Canada.

9. Annex

Results shown below were calculated using TRACI Methodology.

DESC	DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)																					
PROI	DUCT S	STAGE	CONST ON PRO	OCESS			USE STAGE								END OF LIFE STAGE				В	NEFITS AND LOADS EYOND THE SYSTEM OUNDARYS		
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair		Replacement ¹⁾	Dofurbishmont ¹⁾	Refurbishment ¹⁾ Operational energy		Refurbishment 7		Operational water use		De-construction demolition	Transport	Waste processing		Disposal	Recovery- Recycling- potential
A 1	A2	А3	A4	A5	B1	B2	Е	3	B4	В	5	B6	В	7	C1	C2	C3		C4	D		
Х	Х	Х	Х	Х	MND	Χ	MI	ND	MND	M	ND	MND	M	ND I	MND	Х	MNE)	Х	Χ		
RESU	JLTS	OF TH	IE LCA	- EN	VIRON	MEN	JTAL	. IM	PAC1	Γ: O	ne r	iece	of (Corb	in R	usswi	in ML2	2000) Serie	es Mortise		
Lock																						
Param	eter		Para	meter				Uni	t	A1	- A3	A	4	Α	.5	B2	0	:2	C4	D		
GWI	P	G	obal warı	mina pot	ential		ſka	CO ₂	-Ea.1	1.67	7E+0	1 8.98	E-02	5.04	E-01	-2.31E+	00 7.48	E-02	6.12E-	02 -2.31E+00		
ODF			n potentia	l of the s		ric			1-Eq.]		8E-09			2.36		7.13E-						
AP		Acidificat	ozon ion poten	e layer tial of lan	nd and wa	ter		SO ₂			9E-02					5.62E-0						
EP	- '		utrophica					g N-6		_	0E-03					4.43E-0						
Smo	_		level smo			al	[ko	g O₃-							03E-03 2.31E-01 9							
Resour			ources –					[MJ		-				1						03 -1.05E+00		
RESU	JLTS	OF TH	IE LCA	\ - RE	SOUR	CE U	JSE:	One	e pied	ce o	f Co	rbin	Rus	sswi	n MI	_2000	Serie	s M	ortise	Lock		
Parai	meter		Pai	ameter			Unit A1 - A			A3	3 A4 A5		A5	B2		C2		C4	D			
PE	RE	Ren	ewable p ener	orimary e gy carrie		3	[MJ] 3.17E+			+01	01		-	-		-		-	-			
PE	RM		newable irces as		٠,	n	[MJ]	0.00E	DE+00 -								-	-			
PE	RT	Tota	l use of r energy	enewab resourc	-	у	[MJ	[MJ] 3.17E+		+01	01 4.88E-02 1.34		1.34E-02 1.18E		1.18E+02 4.		4.07E-02		3 -1.86E+00			
PEN	NRE	Non re	enewable ener	primary		as	[MJ]	2.38E	+02	02 -		-		-		-		-	-		
PEN	NRM	Non re	enewable		energy	as	[MJ]	0.00E	+00	00 -			-		-	-		-	-		
PEN	NRT	Total u	se of nor		able prim	ary	[MJ]	2.38E	+02	1.24	E+00	1.73	3E-01	6.2	1E+01	1.04E+	00	2.88E-0	2 -2.63E+01		
	М	Us	se of sec				[kg		3.30E	+00	0.00	E+00	0.00	E+00	0.0	0E+00	0.00E+	00	0.00E+0	0.00E+00		
RS	SF		f renewa				[MJ]	0.00E	+00	0.00	E+00	0.00	E+00	0.0	0E+00	0.00E+	00 (0.00E+0	0.00E+00		
	SF			fuels		ry	[MJ	_	0.00E			E+00		E+00		0E+00	0.00E+		0.00E+0			
	W	1	Use of n				[m³]		1.27E	-		E-05		4E-03	-	3E-02	2.87E-0		1.49E-0			
			IE LCA Iortise			FLO'	WS A	AND) WAS	STE	CA ⁻	ΓEGC	DRIE	ES: C)ne	piece	of Co	rbin	Russ	win		
Paran				Parame				U	Init	A1 -	- A3	A4	ı	A5	5	B2	С	2	C4	D		
HV					e dispos	lisposed		[1	kg]			2.83E				3.63E-0			2.01E-			
NHV			on hazar													3.56E-0			5.70E-			
RW CR			Radioact		te dispos or re-use				٠.							1.38E-0			1.15E- 0.00E+			
MF					ecycling				٠.										0.00E+			
ME		ı	Materials			ery			٠.										0.00E+			
EE					cal ener	• •						0.00E							1.17E-			
EE	T	Exported thermal energy						[]	MJ]	0.00E	E+00	0.00E	+00	1.89E	E+00 0.00E+00 0.00E+00				3.21E-	01 -		

Publisher

Institut Bauen und Umwelt e.V. Panoramastr. 1

10178 Berlin Germany

Tel +49 (0)30 3087748-0 Fax +49 (0)30 3087748-29 Mail info@bau-umwelt.com Web www.bau-umwelt.com

Programme holder

Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany

Tel Fax Mail Web

+49 (0)30 3087748-0 +49 (0)30 3087748-29 info@bau-umwelt.com www.bau-umwelt.com

Author of the Life Cycle Assessment

PE INTERNATIONAL AG Tel +49 (0)711 341817-0 Hauptstraße 111-113 Fax +49 (0)711 341817-25 info@pe-international.com 70771 Leinfelden-Echterdingen Mail www.pe-international.com Germany Web

Owner of the Declaration

Corbin Russwin 225 Episcopal Rd Berlin, CT 06037 USA 800-543-3568

Web <u>www.corbinrusswin.com</u> www.assaabloydss.com